
Fast Algorithms for Solving RFPrLR Circulant Linear Systems

ZHAOLIN JIANG
Department of Mathematics

Linyi University
Shuangling Road, Linyi city

CHINA
jzh1208@sina.com

JING WANG
Department of Mathematics

Linyi University
Shuangling Road, Linyi city

CHINA
wangjing3421@yahoo.cn

Abstract: In this paper, fast algorithms for solving RFPrLR circulant linear systems are presented by the fast
algorithm for computing polynomials. The unique solution is obtained when the RFPrLR circulant matrix over
the complex field C is nonsingular, and the special solution and general solution are obtained when the RFPrLR
circulant matrix over the complex field C is singular. The extended algorithms is used to solve the RLPrFL
circulant linear systems. Examples show the effectiveness of the algorithms.
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1 Introduction
Circulant matrix family have important applications
in various disciplines including image processing [1],
communications [2], signal processing [3], encoding
[4], and preconditioner [5]. They have been put on
firm basis with the work of P. Davis [6] and Z. L. Jiang
[7].

The circulant matrices, long a fruitful subject of
research [6, 7, 8, 9, 10, 11, 12], have in recent years
been extended in many directions [24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35]. The f(x)-circulant matri-
ces are another natural extension of this well-studied
class, and can be found in [13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23]. The f(x)-circulant matrix has a wide
application, especially on the generalized cyclic codes
[13]. The properties and structures of the xn−rx−1-
circulant matrices, which are called RFPrLR circulant
matrices, are better than those of the general f(x)-
circulant matrices, so there are good algorithms for
solving the RFPrLR circulant linear system.

In this paper, the fast algorithms presented avoid
the problems of error and efficiency produced by
computing a great number of triangular functions by
means of other general fast algorithms. There is only
error of approximation when the fast algorithm is re-
alized by computers, and only the elements in the first
row of the RFPrLR circulant matrix and the constant
term r are used by the fast algorithm, so the result of
the computation is accurate in theory. Specially, the
result computed by a computer is accurate over the
rational field.

Definition 1. A row first-plus-rlast right (RFPrLR)
circulant matrix with the first row (a0, a1, ..., an−1) is

meant a square matrix over the complex field C of the
form

A = RFPrLRcircfr(a0, a1, . . . , an−1)

=


a0 a1 . . . an−1

an−1 a0 + ran−1 . . . an−2
...

...
. . .

...
a2 a3 + ra2 . . . a1
a1 a2 + ra1 . . . a0 + ran−1

 . (1)

It can be seen that the matrix over the complex
field C with an arbitrary first row and the following
rule for obtaining any other row from the previous
one: Get the i+1st row by adding r times the last ele-
ment of the ith row to the first element of the ith row,
and then shifting the elements of the ith row (cycli-
cally) one position to the right.

Note that the RFPrLR circulant matrix is a xn −
rx − 1 circulant matrix [13], and when r = 0, A be-
comes a circulant matrix [6, 7], when r = 1, A be-
comes a RFPLR circulant matrix[17, 18, 19, 20], and
when r = −1, A becomes a RFMLR circulant matrix
[21, 22, 23]. Thus it is the extension of circulant ma-
trix, RFPLR circulant matrix and RFMLR circulant
matrix.

In this paper, let r be a complex number and sat-
isfy rn ̸= nn

(1−n)(n−1) . It is easily verified that the poly-
nominal g(x) = xn − rx− 1 has no repeated roots in
the complex field if rn ̸= nn

(1−n)(n−1) .

We define Θ(1,r) as the basic RFPrLR circulant
matrix, that is,
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Θ(1,r) =


0 1 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
1 r . . . 0 0


n×n.

(2)

It is easily verified that the polynomial g(x) =
xn − rx − 1 is both the minimal polynomial and
the characteristic polynomial of the matrix Θ(1,r), i.e.,
Θ(1,r) is nonsingular nonderogatory. In addition,

Θn
(1,r) = In + rΘ(1,r).

In view of the structure of the powers of the basic
RFPrLR circulant matrix Θ(1,r), it is clear that

A = RFPrLRcircfr(a0, a1, . . . , an−1)

=

n−1∑
i=0

aiΘ
i
(1,r). (3)

Thus, A is a RFPrLR circulant matrix if and only
if A = f(Θ(1,r)) for some polynomial f(x). The

polynomial f(x) =
n−1∑
i=0

aix
i will be called the rep-

resenter of the RFPrLR circulant matrix A.
In addition, the product of two RFPrLR circulant

matrices is a RFPrLR circulant matrix and the inverse
of a nonsingular RFPrLR circulant matrix is also a
RFPrLR circulant matrix. Furthermore, a RFPrLR
circulant matrices commute under multiplication.

Definition 2. A row last-plus-rfirst left (RLPrFL)
circulant matrix with the first row (a0, a1, . . . , an−1)
is meant a square matrix over the complex field C of
the form

A = RLPrFLcircfr(a0, a1, . . . , an−1)

=


a0 a1 . . . an−1

a1 . . . ra0 + an−1 a0
... . . .

...
...

an−2 . . . ran−3 + an−4 an−3

ra0 + an−1 . . . ran−2 + an−3 an−2

 . (4)

It can be seen that the matrix over the complex
field C with an arbitrary first row and the following
rule for obtaining any other row from the previous
one: Get the i+1st row by adding r times the first ele-
ment of the ith row to the last element of the ith row,
and then shifting the elements of the ith row (cycli-
cally) one position to the left.

Obviously, the RLPrFL circulant matrix over the
complex field C is the extension of left circulant
matrix[6, 7, 36].

For the convenience of application, we give the
obvious results in following lemmas.

Lemma 3. Let A = RFPrLRcircfr(a0, a1, . . . ,
an−1) be a RFPrLR circulant matrix over C and
let B = RLPrFLcircfr(an−1, an−2, . . . , a1, a0) be a
RLPrFL circulant matrix over C. Then

BÎn = A

or
B = AÎn,

where

În =


0 0 . . . 0 1
0 0 . . . 1 0
. . . . . . . . . . . . . . .
1 0 . . . 0 0

 . (5)

Lemma 4 ([16]). Let C[x] be the polynomial ring
over a field C, and let f(x), g(x) ∈ C[x]. Suppose
that the polynomial matrix(

f(x) 1 0
g(x) 0 1

)
is changed into the polynomial matrix(

d(x) u(x) v(x)
0 s(x) t(x)

)
by a series of elementary row operations, then

(f(x), g(x)) = d(x)

and
f(x)u(x) + g(x)v(x) = d(x).

Lemma 5. C[x]/⟨xn − rx− 1⟩ ∼= C[Θ(1,r)].

Proof. Consider the following C-algebra homomor-
phism

φ : C[x] → C[Θ(1,r)]

f(x) → A = f(Θ(1,r))

for f(x) ∈ C[x]. It is clear that φ is an C-algebra
epimorphism. So we have

C[x]/kerφ ∼= C[Θ(1,r)].

Since C[x] is a principal ideal integral domain, there
is a monic polynomial p(x) ∈ C[x] such that kerφ =
⟨p(x)⟩. Since xn − rx− 1 is the minimal polynomial
of Θ(1,r), then p(x) = xn − rx− 1.
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By Lemma 5, we have the following lemma.

Lemma 6. Let A = RFPrLRcircfr(a0, a1, . . . ,
an−1) be a RFPrLR-circulant matrix. Then A is non-
singular if and only if

(f(x), g(x)) = 1,

where

f(x) =
n−1∑
i=0

aix
i

is the representer of A and

g(x) = xn − rx− 1.

Proof. A is nonsingular if and only if f(x) + ⟨xn −
rx−1⟩ is an invertible element in C[x]/⟨xn−rx−1⟩.
By Lemma 5, if and only if there exists

u(x) + ⟨xn − rx− 1⟩ ∈ C[x]/⟨xn − rx− 1⟩

such that

f(x)u(x) + ⟨xn − rx− 1⟩ ≡ 1 + ⟨xn − rx− 1⟩,

if and only if there exist u(x), v(x) ∈ C[x] such that

f(x)u(x) + (xn − rx− 1)v(x) = 1

if and only if (f(x), xn − rx− 1) = 1.

In [37] for an m×n matrix A, any solution to the
equation AXA = A is called a generalized inverse
of A. In addition, if X satisfies X = XAX , then A
and X are said to be semi-inverses A{1,2}.

In this paper, we only consider square matrices
A. In [38] the smallest positive integer k for which
rank(Ak+1)= rank(Ak) holds is called the index of A.
If A has index 1, the generalized inverse X of A is
called the group inverse A# of A. Clearly A and X
are group inverses if and only if they are semi-inverses
and AX = XA.

In [39] and [40] a semi-inverse X of A was con-
sidered in which the nonzero eigenvalues of X are the
reciprocals of the nonzero eigenvalue of A. These ma-
trices were called spectral inverses. It was shown in
[40] that a nonzero matrix A has a unique spectral in-
verse, As, if and only if A has index 1: when As is the
group inverse A# of A.

2 Fast algorithms for solving the
RFPrLR circulant linear system
and the RLPrFL circulant linear
system

Consider the RFPrLR circulant linear system

AX = b, (6)

where A is given in Equation (1),

X = (x1, x2, . . . , xn)
T ,

b = (bn−1, . . . , b1, b0)
T .

If A is nonsingular, then Equation (6) has a
unique solution X = A−1b.

If A is singular and Equation (6) has a solution,
then the general solution of Equation (6) is

X = A{1,2}b+ (In −A{1,2}A)Y,

where Y is an arbitrary n-dimension column vector.
The key of the problem is how to find A−1b,

A{1,2}b and A{1,2}A. For this purpose, we at first
prove the following results.

Theorem 7. Let A = RFPrLRcircfr(a0,a1,· · · ,
an−1) be a nonsingular RFPrLR circulant matrix of
order n over C and b = (bn−1, . . . , b1, b0)

T . Then
there exists a unique RFPrLR circulant matrix

C = RFPrLRcircfr(c0, c1, . . . , cn−1)

of order n over C such that the unique solution of
Equation (6) is the last column of C, i.e.

X = (cn−1, . . . , c1, c0 + rcn−1)
T .

Proof. Since matrix A = RFPrLRcircfr(a0, a1, . . . ,
an−1) is nonsingular, then by Lemma 6 we have

(f(x), g(x)) = 1, where f(x) =
n−1∑
i=0

aix
i is the rep-

resenter of A and g(x) = xn − rx− 1.
Let B = RFPrLRcircfr(b0 − rbn−1, b1, . . . ,

bn−1) be the RFPrLR circulant matrix of order n con-
structed by b = (bn−1, . . . , b1, b0)

T . Then the repre-
senter of B is

b(x) = (b0 − rbn−1) +

n−1∑
i=1

bix
i.

Therefore, we can change the polynomial matrix f(x)
... 1 0

... b(x)

g(x)
... 0 1

... 0


into the polynomial matrix 1

... u(x) v(x)
... c(x)

0
... s(x) t(x)

... c1(x)


by a series of elementary row operations. By Lemma
4, we have(

u(x) v(x)
s(x) t(x)

)(
f(x)
g(x)

)
=

(
1
0

)
,
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(
u(x) v(x)
s(x) t(x)

)(
b(x)
0

)
=

(
c(x)
c1(x)

)
,

i.e.

f(x)u(x) + g(x)v(x) = 1, u(x)b(x) = c(x).

Substituting x by Θ(1,r) in the above two equa-
tions respectively, we have

f(Θ(1,r))u(Θ(1,r)) + g(Θ(1,r))v(Θ(1,r)) = In,

u(Θ(1,r))b(Θ(1,r)) = c(Θ(1,r)).

Since
f(Θ(1,r)) = A, g(Θ(1,r)) = 0

and
b(Θ(1,r)) = B,

then
Au(Θ(1,r)) = In, (7)

u(Θ(1,r))B = c(Θ(1,r)). (8)

By Equation (7), we know that u(Θ(1,r)) is a unique
inverse A−1 of A. According to Equation (8) and the
characters of the RFPrLR circulant matrix, we know
that the last column of C is

(cn−1, . . . , c1, c0 + rcn−1)
T = A−1b.

Since AA−1b = b, then

A−1b = (cn−1, . . . , c1, c0 + rcn−1)
T

is the solution of Equation (6). Since both A−1 and B
are unique, then A−1B is also unique. So

X = (cn−1, . . . , c1, c0 + rcn−1)
T = A−1b

is unique.

Theorem 8. Let A = RFPrLRcircfr(a0, a1, . . . ,
an−1) be a singular RFPrLR circulant matrix
of order n over C and b = (bn−1, . . . , b1, b0)

T .
If the solution of Equation (6) exists, then
there exist a unique RFPrLR circulant matrix
C = RFPrLRcircfr(c0, c1, . . . , cn−1) and a unique
RFPrLR circulant matrix

E = RFPrLRcircfr(e0, e1, . . . , en−1)

of order n over C such that

X1 = (cn−1, . . . , c1, c0 + rcn−1)
T

is a unique special solution of Equation (6) and

X2 = X1 + (In − E)Y

is a general solution of Equation (6), where Y is an
arbitrary n-dimension column vector.

Proof. Since A = RFPrLRcircfr(a0, a1, . . . , an−1),

then the representer of A is f(x) =
n−1∑
i=0

aix
i and the

characteristic polynomial of Θ(1,r) is

g(x) = xn − rx− 1.

We can change the polynomial matrix
(

f(x)
g(x)

)
into the polynomial matrix

(
d(x)
0

)
by a series of

elementary row operations. Since A is singular, by
Lemma 4 and Lemma 6, we know that d(x) is the
largest common factor, which is not equal to 1, of
f(x) and g(x). Let

f(x) = d(x)f1(x)

and
g(x) = d(x)g1(x),

then
(f1(x), g1(x)) = 1.

Since (d(x), g1(x)) = 1, we have

(f(x), g1(x)) = (d(x)f1(x), g1(x)) = 1.

Since (d(x), g1(x)) = 1 and (f(x), g1(x)) = 1, we
have

(f(x)d(x), g1(x)) = 1.

Let B = RFPrLRcircfr(b0 − rbn−1, b1, . . . ,
bn−1) be the RFPrLR circulant matrix of order n con-
structed by b = (bn−1, . . . , b1, b0)

T . Then the repre-
senter of B is

b(x) = (b0 − rbn−1) +

n−1∑
i=1

bix
i.

Therefore, we can change the polynomial matrix f(x)d(x)
... 1 0

... d(x)b(x)
... d(x)f(x)

g1(x)
... 0 1

... 0
... 0


into the polynomial matrix 1

... u(x) v(x)
... c(x)

... e(x)

0
... s(x) t(x)

... c1(x)
... e1(x)


by a series of elementary row operations. Then, by
Lemma 4, we have

f(x)d(x)u(x) + g1(x)v(x) = 1, (9)

d(x)u(x)b(x) = c(x), (10)
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d(x)u(x)f(x) = e(x). (11)

Therefore

f(x)d(x)u(x)f(x) + g(x)f1(x)v(x) = f(x). (12)

Substituting x by Θ(1,r) in Equations (10), (11) and
(12), respectively, we have

d(Θ(1,r))u(Θ(1,r))b(Θ(1,r)) = c(Θ(1,r)),

d(Θ(1,r))u(Θ(1,r))f(Θ(1,r)) = e(Θ(1,r)),

f(Θ(1,r))d(Θ(1,r))u(Θ(1,r))f(Θ(1,r))+

g(Θ(1,r))f1(Θ(1,r))v(Θ(1,r)) = f(Θ(1,r)).

Since f(Θ(1,r)) = A, g(Θ(1,r)) = 0 and b(Θ(1,r)) =
B, then

d(Θ(1,r))u(Θ(1,r))B = c(Θ(1,r)), (13)

d(Θ(1,r))u(Θ(1,r))A = e(Θ(1,r)), (14)

Ad(Θ(1,r))u(Θ(1,r))A = A. (15)

In the same way, we have

d(Θ(1,r))u(Θ(1,r))Ad(Θ(1,r))u(Θ(1,r))

= d(Θ(1,r))u(Θ(1,r)). (16)

By Equation (15) and (16), we know T =
d(Θ(1,r))u(Θ(1,r)) is a semi-inverses A{1,2} of A.

Let

C = TB = c(Θ(1,r))

= RFPrLRcircfr(c0, c1, . . . , cn−1).

and let

E = TA = e(Θ(1,r))

= RFPrLRcircfr(e0, e1, . . . , en−1).

According to Equation (13) and the characters of the
RFPrLR circulant matrix, we know that the last col-
umn of C is

(cn−1, . . . , c1, c0 + rcn−1)
T = Tb.

Since AX = b has a solution, then ATb = b, i.e., Tb
is a solution of Equation (6). We have

A[Tb+ (In − E)Y ] = ATb+A(In − E)Y

= b+AY −AEY

= b+AY −ATAY

= b+AY −AY = b,

so X2 = X1 + (In − E)Y is the general solution
of Equation (6), where Y is an arbitrary n-dimension
column vector and X1 = Tb.

Since both A and T are RFPrLR circulant matri-
ces, then AT = TA. If there exists another RFPrLR
circulant matrix T1 such that

AT1A = A, T1AT1 = T1, T1A = AT1.

Let AT = TA = H and AT1 = T1A = F . Clearly
H2 = H and F 2 = F . Thus we have

H = AT = AT1AT = FH,

F = T1A = T1ATA = FH.

So H = F. Hence

T = TAT = HT = FT = T1AT

= T1H = T1F = T1AT1 = T1.

So T is unique. Hence TB = C, TA = E and Tb are
also unique.

By Theorem 7 and Theorem 8, we have the fol-
lowing fast algorithm for solving the RFPrLR circu-
lant linear system (6):
Step 1. From the RFPrLR circulant linear system (6),
we get the polynomial

f(x) =
n−1∑
i=0

aix
i, g(x) = xn − rx− 1

and

b(x) = (b0 − rbn−1) +

n−1∑
i=1

bix
i;

Step 2. Change the polynomial matrix(
f(x) b(x)
g(x) 0

)
into the polynomial matrix(

d(x) c(x)
0 c1(x)

)
by a series of elementary row

operations;

Step 3. If d(x) = 1, then the RFPrLR circulant lin-
ear system (6) has a unique solution. Substituting x
by Θ(1,r) in polynomial c(x), we obtain a RFPrLR
circulant matrix

C = c(Θ(1,r)) = RFPrLRcircfr(c0, c1, . . . , cn−1).

So the unique solution of AX = b is

(cn−1, . . . , c1, c0 + rcn−1)
T ;

Step 4. If d(x) ̸= 1, d(x) dividing g(x), we get the
quotient g1(x) and change the polynomial matrix(

f(x)d(x) d(x)b(x) d(x)f(x) d(x)f(x)b(x)
g1(x) 0 0 0

)
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into the polynomial matrix(
1 c(x) e(x) r(x)
0 c1(x) e1(x) r1(x)

)
by a series of elementary row operations;

Step 5. Substituting x by Θ(1,r) in polynomial r(x),
we get a RFPrLR circulant matrix

R = r(Θ(1,r)) = AA{1,2}B.

If the last column of R isn’t b, then AX = b has no
solution. Otherwise, the RFPrLR circulant linear sys-
tem AX = b has a solution. Substituting x by Θ(1,r)

in polynomial c(x) and e(x), we have two RFPrLR
circulant matrices

C = c(Θ(1,r)) = A{1,2}B

and
E = e(Θ(1,r)) = A{1,2}A.

So the unique special solution of AX = b is

X1 = (cn−1, . . . , c1, c0 + rcn−1)
T

and the general solution of AX = b is

X2 = X1 + (In − E)Y,

where Y is an arbitrary n-dimension column vector.
The advantage of the above algorithm is that it

can solve AX = b whether the coefficient matrix of
AX = b is singular or nonsingular.

By Lemma 3 and Theorem 7, we have the follow-
ing theorem.

Theorem 9. Let A = RLPrFLcircfr(an−1, . . . , a1,
a0) be a nonsingular RLPrFL circulant matrix of or-
der n over C and b = (bn−1, . . . , b1, b0)

T . Then there
exists a unique RFPrLR circulant matrix

C = RFPrLRcircfr(c0, c1, . . . , cn−1)

of order n over C such that the unique solution of
AX = b is

X = (c0 + rcn−1, c1, . . . , cn−2, cn−1)
T .

By Lemma 3 and Theorem 8, we have the follow-
ing theorem.

Theorem 10. Let A = RLPrFLcircfr(an−1, . . . , a1,
a0) be a singular RLPrFL circulant matrix of order
n over C and b = (bn−1, . . . , b1, b0)

T . If the solution
of AX = b exists, then there exists a unique RFPrLR
circulant matrix

C = RFPrLRcircfr(c0, c1, . . . , cn−1)

and a unique RFPrLR circulant matrix

E = RFPrLRcircfr(e0, e1, . . . , en−1)

of order n over C such that

X1 = (c0 + rcn−1, c1, . . . , cn−2, cn−1)
T

is the unique special solution of AX = b and

X2 = X1 + În(In − E)Y

is the general solution of AX = b, where Y is an
arbitrary n-dimension column vector and În is given
in Equation (5).

By Theorem 9 and Theorem 10, we can get the
fast algorithm for solving the RLPrFL circulant linear
system AX = b, where

A = RLPrFLcircfr(an−1, . . . , a1, a0),

X = (x1, x2, . . . , xn)
T ,

b = (bn−1, . . . , b1, b0)
T .

Step 1. From the RLPrFL circulant linear system
AX = b, we get the polynomial

f(x) =
n−1∑
i=0

aix
i, g(x) = xn − rx− 1

and

b(x) = (b0 − rbn−1) +

n−1∑
i=1

bix
i;

Step 2. Change the polynomial matrix(
f(x) b(x)
g(x) 0

)
into the polynomial matrix(

d(x) c(x)
0 c1(x)

)
by a series of elementary row

operations;

Step 3. If d(x) = 1, then the RLPrFL circulant linear
system AX = b has a unique solution. Substituting
x by Θ(1,r) in polynomial c(x), we have a RFPrLR
circulant matrix

C = c(Θ(1,r)) = RFPrLRcircfr(c0, c1, . . . , cn−1).

So the unique solution of AX = b is

(c0 + rcn−1, c1, . . . , cn−2, cn−1)
T ;

Step 4. If d(x) ̸= 1, dividing g(x) by d(x) , we get
the quotient g1(x) and change the polynomial matrix(

f(x)d(x) d(x)b(x) d(x)f(x) d(x)f(x)b(x)
g1(x) 0 0 0

)
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into the polynomial matrix(
1 c(x) e(x) r(x)
0 c1(x) e1(x) r1(x)

)
by a series of elementary row operations;

Step 5. Substituting x by Θ(1,r) in polynomial r(x),
we get a RFPrLR circulant matrix

R = r(Θ(1,r)) = AA{1,2}B.

If the last column of R isn’t b, then AX = b has no
solution. Otherwise, the RLPrFL circulant linear sys-
tem AX = b has a solution. Substituting x by Θ(1,r)

in polynomial c(x) and e(x), we have two RFPrLR
circulant matrices

C = c(Θ(1,r)) = A{1,2}B

and
E = e(Θ(1,r)) = A{1,2}A.

So the unique special solution of AX = b is

X1 = (c0 + rcn−1, c1, . . . , cn−2, cn−1)
T

and
X2 = X1 + În(In − E)Y

is the general solution of AX = b, where Y is an
arbitrary n-dimension column vector.

3 Examples

Example 1. Solve the RFP3LR circulant linear sys-
tem AX = b, where

A = RFP3LRcircfr(2, 1, 0, 1)

and
b = (0, 1, 2, 1)T .

From A = RFP3LRcircfr(2, 1, 0, 1) and b =
(0, 1, 2, 1)T , we get the polynomial

f(x) = 2 + x+ x3, g(x) = −1− 3x+ x4

and
b(x) = 1 + 2x+ x2.

Then

A(x) =

(
f(x) b(x)
g(x) 0

)

=

(
2 + x+ x3 1 + 2x+ x2

−1− 3x+ x4 0

)
.

We transform the polynomial matrix A(x) by a series
of elementary row operations as follows:

A(x) =

(
2 + x+ x3 1 + 2x+ x2

−1− 3x+ x4 0

)
www� (2)− x(1)(

2 + x+ x3 1 + 2x+ x2

−1− 5x− x2 p3(x)

)
www� (1) + x(2)(

2− 5x2 1 + 2x− 2x3 − x4

−1− 5x− x2 −x− 2x2 − x3

)
www� (1)− 5(2)(

7 + 25x p1(x)
−1− 5x− x2 −x− 2x2 − x3

)
www� (2) + 1

25x(1)(
7 + 25x p1(x)

−1− 118
25 x p2(x)

)
www� 118(1) + 625(2)(

201 p3(x)
−1− 118

25 x p2(x)

)
www� 1

201(1)(
1 p4(x)

−1− 118
25 x p2(x)

)
.

where

p1(x) = 1 + 7x+ 10x2 + 3x3 − x4,
p2(x) = −24

25x− 43
25x

2 − 15
25x

3 + 3
25x

4 − 1
25x

5,
p3(x) = 118+226x+105x2−21x3 − 43x4−25x5,
p4(x) =

118
201+

226
201x+

35
67x

2− 7
67x

3− 43
201x

4− 25
201x

5.

Since d(x) = 1, then the RFP3LR circulant linear sys-
tem AX = b has a unique solution. On the other hand,

c(x) =
118

201
+
226

201
x+

35

67
x2− 7

67
x3− 43

201
x4− 25

201
x5.

Substituting x by Θ(1,3) in polynomial c(x), we have
the RFP3LR circulant matrix

C = c(Θ(1,3)) = RFP3LRcircfr(
25

67
,
24

67
,
10

67
,− 7

67
).

So the unique solution of AX = b is the last column
of C, i.e.,

X = (− 7

67
,
10

67
,
24

67
,
4

67
)T .
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Example 2. Solve the RFP6LR circulant linear sys-
tem

AX = b,

where

A = RFP6LRcircfr(1, 3 +
√
10)

and
b = (1, 3 +

√
10)T .

From A = RFP6LRcircfr(1, 3 +
√
10) and b =

(1, 3 +
√
10)T , we get the polynomial

f(x) = 1 + (3 +
√
10)x, g(x) = −1− 6x+ x2

and
b(x) =

√
10− 3 + x.

Then

A(x) =

(
f(x) b(x)
g(x) 0

)

=

(
1 + (3 +

√
10)

√
10− 3 + x

−1− 6x+ x2 0

)
.

We transform the polynomial matrix A(x) by a series
of elementary row operations as follows:

A(x) =

(
1 + (3 +

√
10)x

√
10− 3 + x

−1− 6x+ x2 0

)
www� (2)− ((

√
10− 3)x− 1)(1)(

1 + (3 +
√
10)x

√
10− 3 + x

0 q1(x)

)
www� (

√
10− 3)(1)( √

10− 3 + x q1(x)
0 q2(x)

)
,

where

q1(x) = 19− 6
√
10 + (

√
10− 3)x,

q2(x) = −3+
√
10+ (6

√
10− 18)x− (

√
10− 3)x2.

It is obvious that d(x) =
√
10 − 3 + x ̸= 1, it

denoted that A is singular.
Then

g1(x) = g(x)/d(x) = −
√
10− 3 + x,

d(x)f(x) =
√
10− 3 + 2x+ (

√
10 + 3)x2,

d(x)b(x) = 19− 6
√
10 + (2

√
10− 6)x+ x2,

d(x)f(x)b(x) = 19− 6
√
10 + 3(

√
10− 3)x

+ 3x2 + (3 +
√
10)x3,

Thus we structure matrix B(x) and transform the
polynomial matrix B(x) by a series of elementary row
operations as follows:

B(x) =(
f(x)d(x) d(x)b(x) d(x)f(x) d(x)f(x)b(x)
g1(x) 0 0 0

)
=

(
r1(x) s1(x) s2(x) s3(x)

−
√
10− 3 + x 0 0 0

)
www� (1)− (3 +

√
10)x(2)(

r2(x) s1(x) s2(x) s3(x)

−
√
10− 3 + x 0 0 0

)
www� (1)− (21 + 6

√
10)(2)(

40
√
10 + 120 s1(x) s2(x) s3(x)

−3−
√
10 + x 0 0 0

)
www� 1

40(
√
10− 3)(1)(

1 s4(x) s5(x) s6(x)

−3−
√
10 + x 0 0 0

)
.

where

r1(x) =
√
10− 3 + 2x+ (

√
10 + 3)x2,

r2(x) =
√
10− 3 + (21 + 6

√
10)x,

s1(x) = 19− 6
√
10 + (2

√
10− 6)x+ x2,

s2(x) =
√
10− 3 + 2x+ (

√
10 + 3)x2,

s3(x) = 19−6
√
10+3(

√
10−3)x+3x2+(3+

√
10)x3,

s4(x) =
37

√
10−117
40 + 19−6

√
10

20 x+
√
10−3
40 x2,

s5(x) =
19−6

√
10

40 +
√
10−3
20 x+ 1

40x
2,

s6(x) =
37

√
10−117
40 + 57−18

√
10

40 x

+3
√
10−9
40 x2 + 1

40x
3.

Substituting x by Θ(1,6) in polynomial

r(x) =
37

√
10− 117

40
+

57− 18
√
10

40
x

+
3
√
10− 9

40
x2 +

1

40
x3,

we get the RFP6LR circulant matrix

R = r(Θ(1,6)) = AA{1,2}B

= RFP6LRcircfr(
√
10− 3, 1).
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Since the last column of R is b, the RFP6LR cir-
culant linear system AX = b has a solution.

Substituting x by Θ(1,6) in polynomial

c(x) =
37

√
10− 117

40
+

19− 6
√
10

20
x+

√
10− 3

40
x2

and

e(x) =
19− 6

√
10

40
+

√
10− 3

20
x+

1

40
x2,

we have the RFP6LR circulant matrices

C = c(Θ(1,6)) = A{1,2}B

= RFP6LRcircfr(
19

√
10− 60

20
,
10− 3

√
10

20
)

and

E = e(Θ(1,6)) = A{1,2}A

= RFP6LRcircfr(
10− 3

√
10

20
,

√
10

20
).

So the unique special solution of AX = b is the last
column of C, i.e.,

X1 = (
10− 3

√
10

20
,

√
10

20
)T

and a general solution of AX = b is

X2 = X1 + (In − E)Y

=

(
10−3

√
10

20 + 10+3
√
10

20 k1 −
√
10
20 k2√

10
20 −

√
10
20 k1 +

(10−3
√
10)

20 k2

)
,

where Y = (k1, k2)
T ∈ C.
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